If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+30a-4264=0
a = 1; b = 30; c = -4264;
Δ = b2-4ac
Δ = 302-4·1·(-4264)
Δ = 17956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{17956}=134$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-134}{2*1}=\frac{-164}{2} =-82 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+134}{2*1}=\frac{104}{2} =52 $
| -(7/2)r=-(35/6) | | 29x-2=(19x-13)+7x | | 7(12+8t)-6=9(7t+2)+t | | 3x+6x-4+-3x+5=25 | | 5a=2a+15 | | r-3(r-2)=44 | | -7(2x-7)+5(3x-6)-6=8-7 | | 6x-12+x=9 | | 7+30x=15x+9 | | 8x-8=52 | | 105+y+5y-15=180 | | 6x+14=-708x | | 2x=x-7+2x-4 | | -6.3n=(-8.19) | | 17=3+7a | | 11x-1=2x+6 | | 30/4+5y=15 | | 6-3x-x=2+6x-20 | | 4x+23+6x-7=180 | | 2(r-7)-(2r-3)=9)r-2) | | 17x+15=6x+15 | | 3(y+2)=2(y-3)-15 | | 5-15m=6+20m | | (q-7)*6=127 | | 67x-1=(15x+12)+12x | | 14x=x+7+58 | | 67x-1=(15x+12) | | u^2-24=0 | | a2-6a+5=0 | | 18+x=7x+2•9 | | 30a^2+24a-6=0 | | -5s-(-6s)=3+7 |